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INTRODUCTION

It has been established that aquatic predators live in 
complex environments where the availability of different 

prey types may vary in both space and time (Ahlgren et al., 
1997; Bogan & Lyle, 2007; Downes, et al., 1993; Hart, 1985; 
Outridge, 1998). Prey abundance in a particular spatial zone 
may be dependent on season, and the behaviour and ecology 
of a particular prey species (Beckett et al., 1992). Previous 
research has shown that, correspondingly, the composition 
of the diet of such predators can vary seasonally with relative 
abundance of different species (Fasola & Canova, 1992).
	 The	 fitness	 of	 a	 predator	 may	 depend	 partly	 on	 the	
foraging success of individuals in order to invest in 
reproduction (Blanckenhorn, 1991; Morse & Stephens, 
1996), and so predators must be able to cope with 
spatial heterogeneity of prey types in order to maximise 
evolutionary success. In some species, morphological 
phenotypic polymorphisms may allow individuals to 
specialise more on particular feeding niches and thus 
improve foraging success (Ehlinger & Wilson, 1998). 
Alternatively, individual animals may modulate foraging 
strategies to optimize them for given prey types as and 
when they are available (Deban, 1997; Ehlinger, 1989; 
Heiss et al., 2015; Montgomery & Hamilton, 1997; Persson 
& Greenberg, 1990). 
 Amphibians have relatively conserved body forms 
compared	with	fish	and	so	are	more	likely	to	fall	into	the	
latter category than the former. They are often an important 
component of aquatic vertebrate predator assemblages, 
especially	in	temporary	and	fishless	waters	(Wells,	2007).	
Amphibians use a variety of sensory organs to detect prey, 

including eyes and chemosensory organs (e.g. Miles et al., 
2004; Placyk & Graves, 2002) and, in aquatic amphibians, 
mechano- and electro-receptors (e.g. Himstedt et al., 1982; 
Martin et al., 2013; Reiss & Eisthen, 2008).  Species-
specific	 biases	 exist	 in	 their	 relative	 importance	 in	 prey	
detection. Some species use multiple senses (e.g. Avila & 
Frye, 1978; Manenti et al., 2013; Placyk & Graves, 2002; 
Uiblein et al., 1992), while others may rely almost entirely 
on single senses (Martin et al., 2013; Miles et al., 2004). 
 It is well established that once prey has been located, 
amphibians may modulate their prey seizing (Anderson, 
1993; Deban, 1997; Maglia & Pyles, 1995; Monroy 
& Nishikawa, 2011; Valdez & Nishikawa, 1997) and 
processing (Avila & Frye, 1978) tactics in response 
to different prey types, as well as to different feeding 
environments (Heiss et al., 2013; Manenti et al., 2013). 
Moreover,	search	tactics	may	be	modified	flexibly	to	deal	
with different distributions of the same prey type (Nomura 
& Rossa-Ferres, 2011). However, little is known about 
flexibility	of	 the	strategies	used	by	amphibians	 to	search	
their environment for prey prior to encountering prey 
items. For example, it is not known whether amphibians 
are	capable	of	exhibiting	flexible	 (i.e.	variable	according	
to treatment), if stereotypic (i.e. little variation within 
treatments), responses (Wainwright et al., 2008) to cues 
produced by different prey types in order to improve 
chances of foraging success. In other aquatic predators 
(mainly	fish),	such	behaviour	is	well	documented	(Ehlinger,	
1989; Montgomery & Hamilton, 1997; Persson & 
Greenberg, 1990) and given the similarity of niche, aquatic 
amphibians are likely to exhibit similar capabilities.
 The Lake Oku clawed frog (Xenopus longipes) is a 
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of different prey types with different spatial niches may vary.  Aquatic predators have evolved a number of ways in 
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whether clawed frogs (Xenopus longipes) can modulate their foraging behaviour in response to benthic (bloodworms) and 
pelagic (glassworms) prey species to which they had already been exposed, and whether any response would be elicited by 
chemosensory prey cues alone.  Frogs responded to the presence of prey items by foraging more than in a control treatment 
(no cues at all) and were able to respond appropriately to prey type, foraging more in the water column for glassworms and 
on	the	aquarium	floor	for	bloodworms.	This	effect	was	maintained	in	a	second	set	of	trials	where	frogs	were	exposed	only	
to the chemosensory cues of the same prey items. These data show that X. longipes can modulate its foraging strategy to 
match the type of prey available and that this behaviour is at least in part informed by chemosensory cues. 
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Critically Endangered (IUCN SSC Amphibian Specialist 
Group, 2017) pipid frog endemic to the highland crater 
lake of Mount Oku in Cameroon. Xenopus longipes 
is a generalist predator and feeds largely on aquatic 
invertebrates (Tapley et al., 2016) and will readily feed on 
prey items at any position in the water column (C. Michaels 
pers. obs.), although it occupies the benthic zone and mats 
of submerged vegetation when not foraging. It is equipped 
with upward-pointing eyes, dermal mechanoreceptors, 
typical amphibian chemosensory organs and specialised 
chemosensory subocular tentacles (Loumont & Koebel, 
1991), which could all be employed in foraging. We 
investigated whether these frogs are able to modulate 
their foraging behaviour in response to cues from different 
prey type, and whether chemical cues may be important in 
detecting prey.

MATERIALs AND METHODs

study Animals and Husbandry
In this study, we used adult founder (F0) and captive bred 
F1 X. longipes held as part of the Living Collection at 
ZSL London Zoo, UK. Details of the source of founder 
animals and the husbandry of the frogs is reported by 
Michaels	 et	 al.	 (2015);	 briefly,	 frogs	were	maintained	 in	
biologically	 filtered	 aquaria	 containing	 soft,	 neutral	 pH	
water (Total Dissolved Solids <30mg/L, pH c. 7.2), which 
were held at 16-20 °C. Before this study, animals were 
fed on a combination of pelleted food (Xenopus Express, 
USA), live bloodworm (Chironomidae), live glassworm 
(Chaoborus), live earthworm (Eisenia hortensis) and water 
fleas	 (Daphnia), with an equal proportion of blood- and 
glassworms. Frogs remained part of the Living Collection 
at ZSL London Zoo after the study was completed. The 
experimental protocol was reviewed by the Zoological 
Society of London (Zoological Project Database number: 
ZDZ58)	and	was	designated	as	not	requiring	a	Home	Office	
license	under	the	UK	Animals	(Scientific	Procedures)	Act	
1986,	as	methods	did	not	diverge	significantly	from	normal	
husbandry.

Experimental Array
Six groups of six frogs, outside the reproductive period, 
each group comprising one F1 female, one F1 male, three 
F0 females and one F0 male, were housed in glass aquaria 
measuring	 45x45x45cm	 filled	 with	 water	 to	 a	 depth	 of	
35cm.	This	combination	of	sexes	and	filial	generations	was	
used simply to ensure even distribution of these categories 
between	 tanks.	 Aquaria	 were	 part	 of	 a	 filtered	 system	
linked	to	a	sump	and	large	external	canister	filter	filled	with	
filter	 foam	 and	 ceramic	 biological	 filter	 media	 (Eheim,	
Germany). The return plumbing for each aquarium was 
equipped with a tap allowing isolation of each enclosure 
from the system, which prevented the circulation of prey 
scents between enclosures. Each enclosure was equipped 
with identical hides (one PVC plastic pipe, one 25x10cm 
piece of plastic trellis and one granite pebble c. 10cm in 
diameter). There was no bottom substrate.

Experimental Protocol
Groups of frogs were exposed to two trials between the 13 
and 22 April, 2016 (Trial 1 and Trial 2). In Trial 1, each 
group of frogs was presented with three prey treatments 
(PreyTypeCue) over three consecutive days, the order of 
which was systematically varied between tanks so that 
no group of frogs received the treatments in the same 
order. The three treatments (PreyTypeCue), presented as 
3ml of live prey items, were: Chaoborus Glassworms, a 
pelagic species; Bloodworms (Chironomidae), a benthic 
species; Control, where tank water was disturbed with a 
clean, plastic 3ml spoon. Immediately after the stimulus 
was added to a tank, the animals were scan sampled for 
15 minutes with counts made instantaneously every three 
minutes. This 15 minute period was long enough to capture 
foraging behaviour.  At each three-minute interval, frogs 
were allocated to combinations of the following two 
category	 pairs:	 ‘foraging’	 (repeated	 flicking	 of	 the	 front	
limbs, which aims to push any food items into the mouth 
and is the primary feeding behaviour in this species) or 
‘non-foraging’ (any other behaviour), and ‘on the substrate’ 
(any part of the body in contact with the substrate of the 
aquarium) or ‘off the substrate’ (no part of the body in 
contact with the substrate). These paired categories (e.g. 
foraging on the substrate) were exhaustive and mutually 
exclusive such that all frogs were in one of the four paired 
states. A count of the number of frogs engaged in each 
category was made using a hard-copy check sheet. All 
observations were made by a single observer (SD).
 In Trial 2, the same experiment was repeated one week 
later, but rather than presenting prey items, each treatment 
consisted of the addition of 40ml of Reverse Osmosis 
(RO) water in which live prey items had been soaked for 
24 hours to provide chemosensory cues only; the control 
treatment consisted of plain 40ml RO water delivered 
using a clean pipette. Powder-free vinyl gloves were worn 
for all interactions with the aquaria and these were changed 
between enclosures to avoid contamination with chemical 
cues.

statistical Analyses
For each tank in each treatment, the mean number of 
frogs foraging in the water column and on the aquarium 
floor	 over	 the	 six	 observation	 intervals	 was	 calculated,	
resulting in a single number for each behaviour-position 
category per tank per treatment. Given the small sample 
size (6 tanks) and the repeated measures within the same 
tank, Friedman’s test (Q statistics) and Dunn’s post-hoc 
comparison (Z statistics) were employed to assess the 
foraging patterns between different prey items or between 
different chemosensory cues. A Wilcoxon paired signed 
rank test (W statistics) was used to compare numbers of 
frogs exhibiting appropriate behavioural responses to 
Bloodworms and Glassworms between Trials 1 and 2. All 
analyses were conducted in SPSS 23.0 for Windows.
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REsULTs

Trial 1
There	 was	 a	 significant	 effect	 of	 PreyTypeCue	 on	 the	
number	 of	 individuals	 foraging	 on	 the	 aquarium	 floor	
(Q2=12, P=0.002). Using Dunn’s post-hoc comparisons 
(see	 Fig.	 1A),	 Bloodworms	 significantly	 increased	 the	
number of frogs that were foraging and on the substrate 
against Control (Z=-2, P=0.001). The differences in 
numbers of frogs that were foraging and on the substrate 
were	not	significant	between	Bloodworms	and	Glassworms	
(Z=-1, P=0.083) or between Glassworms and Control (Z=-
1, P=0.083). There was also a difference in the number 
of frogs that were foraging and off the substrate across 
treatments (Q2=10.182, P=0.006) where Glassworms had a 
greater number of frogs foraging and off the substrate than 
Bloodworms (Z=1.667; P=0.004) and Control (Z=1.333, 
P=0.021).	No	significant	difference	between	Bloodworms	
and Control (Z=0.333, P=0.564) was detected. 

Trial 2 
There	 was	 a	 significant	 effect	 of	 PreyTypeCue	 on	 the	
number of individuals foraging and on the substrate  
(Q2 =10.182, P=0.006).  Using Dunn’s post-hoc comparisons 
(see	 Fig.	 1B),	 Bloodworms	 significantly	 increased	 the	
number of frogs foraging and on the substrate compared to 
Glassworms (Z=-1.333, P=0.021) and Control (Z=-1.667, 
P=0.004). There was no difference in this respect between 
Glassworms and Control (Z=-0.333, P=0.564). There was 
also	 a	 significant	 effect	 of	 PreyTypeCue	 on	 the	 number	
of frogs that were foraging and in the water column  
(Q2 =7.913, P=0.019); Glassworms had a greater number 
than Control (Z=1.583, P=0.006) and Bloodworms 
(Z=1.592, P=0.012),	but	there	was	no	significant	difference	
between Bloodworms and Control (Z=0.667, P=0.248). 

Appropriate Response Comparison
The number of frogs foraging and on the substrate did 
not differ between Trial 1 and two under the Bloodworms 
treatment (W=8, P>0.05). The number of frogs foraging 
and	off	the	substrate	was	significantly	lower	in	Trial	2	than	
in Trial 1 (W=0, P<0.05).

DIsCUssION

In Trial 1, the results establish that frogs did indeed 
respond to the presence of blood- and glass-worms with 
distinct foraging behaviours. Further, our results show 
that chemical cues alone (Trial 2) elicit the same prey-
specific	foraging	responses.	The	small	amount	of	foraging	
behaviour seen in control frogs was probably a result of a 
conditioned response to the approach of a human and of a 
low level of baseline foraging exhibited by the frogs.
 Flexible foraging behaviour  allows animals to exploit 
resources	 efficiently	 by	 using	 prey	 search	 behaviour	
appropriate to the prey detected (Wainwright et al., 2008) 
and	 is	 an	 alternative	 to	 the	 evolution	 of	 prey-specific	
morphologies	(Ehlinger	&	Wilson,	1998).	Such	a	flexible	
hunting	strategy	also	suggests	that	these	frogs	specifically	
target prey items in their environment rather than simply 

ingesting food items when encountered randomly. This 
specific	 aspect	 of	 plastic	 foraging	 behaviour	 is	 not	 well	
studied in amphibians. Amphibians are known to modulate 
prey handling behaviour in response to different prey 
types once encountered (Anderson, 1993; Avila & Frye, 
1978; Deban, 1997; Maglia & Pyles, 1995; Monroy & 
Nishikawa, 2011; Valdez & Nishikawa, 1997), to foraging 
in different environments (Heiss et al., 2013; Manenti et al., 
2013) and to different prey distributions of the same prey 
type (Nomura & Rossa-Ferres, 2011), but little evidence 
exists concerning prey searching strategy in this context. It 
is worth noting that while the frogs in this study displayed 

Foraging strategy in the aquatic frog Xenopus longipes

Figure. 1. Mean numbers of frogs foraging on the aquarium 
floor and foraging in the water column when exposed to 
glassworms, bloodworms and control treatments in Trial 1 (prey 
items present; Panel A) and Trial 2 (chemosensory cues only; 
Panel B). Error bars represent the standard error of the mean. 
Asterisked brackets reflect significant differences (P<0.05) 
between the bars at the tips of the brackets identified with 
Dunn’s post-hoc tests; for exact p values, see text. An absence 
of brackets linking bars implies no significant difference.
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flexible	 foraging	 strategies	 to	 align	 their	 own	 behaviour	
with that of the prey item, the method of actually seizing 
the prey items did not vary noticeably. Xenopus laevis is 
known to use very different means of prey seizure (Avila & 
Frye, 1978), but this was in response to very different prey 
forms. In the present study, Bloodworms and Glassworms 
are probably too similar (both being similarly sized, 
elongate ‘worms’) to require different handling behaviours. 
Chemosensory organs are a dominant sense for prey 
detection in a number of amphibians (Avila & Frye, 1978; 
Manenti et al., 2013; Martin et al., 2013; Placykl & Graves, 
2002; Telfer & Laberge, 2013).  In aquatic species, especially 
those living in habitats with poor visibility (which does 
not apply to Lake Oku, which is a relatively low turbidity 
system – T. Doherty-Bone, pers. Comm.), chemosensory 
cues may be particularly important (Manenti et al., 2013; 
Martin et al., 2013; Uiblein et al., 1992). In species where 
single senses have become highly dominant, other organs 
are typically reduced (Martin et al., 2013). Although 
Xenopus	frogs	are	able	to	find	prey	using	olfaction	alone	
(e.g. Avila & Frye, 1978), other sense organs are highly 
developed including eyes, mechano- and electroreceptors 
and	 these	 are	 also	 used	 to	 find	 prey	 (Elepfandt,	 1985;	
Himstedt et al., 1982). Our data suggest the chemosensory 
stimuli are an important component of prey detection in  
X. longipes. The number of frogs that were both foraging 
and in the area in tank occupied by the prey items (or, in 
Trial 2, where the prey item associated with a chemical 
would be) did not differ between trials in the Bloodworms 
treatment.	 Contrastingly,	 this	 was	 significantly	 lower	 in	
Trial 2, where only olfactory cues were presented, than in 
Trial 1, where prey items were also present. This suggests 
that frogs may rely more on chemosensory stimuli to locate 
Bloodworms than Glassworms, where other senses may be 
important. Xenopus longipes forages for food both during 
the	day	and	the	night	in	the	field	(B.	Tapley,	pers.obs.)	and	
it is also likely that the sensory stimuli used for hunting 
varies with light levels; in this study, frogs were only fed 
during hours of light and so any such variation could not be 
detected. Further work to establish which senses are used 
for each prey type, any hierarchy in their importance and 
variation	influenced	by	environmental	parameters	such	as	
darkness and turbidity, was beyond the scope of this study.
The role of learning in the origin of these behavioural 
strategies is not elucidated by this study, as all frogs had 
been historically exposed to the prey items used. Given that 
the prey species used in this study are not sympatric with 
X. longipes	in	the	field,	it	is	unlikely	that	the	prey-specific	
behavioural response displayed by frogs when presented 
with both prey and with chemosensory stimuli alone can 
be	 explained	 by	 innate	 reflexes.	 Rather,	 it	 is	 probable	
that frogs learned to associate particular prey scents with 
corresponding prey types and locations. Xenopus laevis 
can learn to associate given prey types with particular 
vibrational signatures (Elepfandt, 1985, 1986; Elepfandt 
et al., 2000, 2016) and moreover other amphibians show 
similar associative learning capabilities (Suboski, 1992; 
Ewert et al., 2001) including using prey chemosensory cues 
(Dole et al., 1981). The use of naive captive bred frogs may 
provide insight into the relative importance of innate and 

learned responses in driving foraging strategy selection. 
Similarly, as frogs were held in groups for logistical 
reasons,	 there	 may	 have	 been	 a	 facilitating	 influence	 of	
conspecifics	on	frog	behaviour;	however,	use	of	‘tank’	as	
the experimental unit was intended to address this. Further 
work comparing the behaviour of lone and group-housed 
frogs in naive and experienced states would allow this to 
be investigated. 
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